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Abstract— Traditional menu analysis methods rely primarily 

on sales data, providing limited insights into customer 

satisfaction and preferences. To address this limitation, we 

developed a system that leverages fuzzy string-matching 

algorithms to extract menu item mentions from unstructured 

customer review text. The system first normalizes each review, 

then pinpoints dish references through a two-tier matcher that 

combines exact substring matching with levenshtein distance-

based fuzzy matching, achieving 80% similarity threshold 

optimization for menu item identification. This system uses a 

comprehensive synonym dictionary that maps canonical menu 

names to their textual variations. Performance evaluation 

demonstrates the system can process 10⁴ reviews in under 2 

seconds with O(R·I·S·L) complexity, where R represents reviews, 

I menu items, S synonyms per item, and L average sentence 

length. This automated approach transforms unstructured 

customer feedback into actionable business intelligence, enabling 

restaurants to make data-driven decisions about menu 

optimization, item reformulation, and customer satisfaction 

improvements.  

Keywords—fuzzy matching; menu analysis; customer reviews; 

string matching; levenshtein distance 

I.  INTRODUCTION 

In the increasingly competitive restaurant industry, 
understanding customer preferences and menu item popularity 
has become crucial for business success and strategic decision-
making. Traditional methods of assessing menu performance 
often rely on sales data alone, which provides limited insight 
into the underlying reasons for customer satisfaction or 
dissatisfaction. With the proliferation of online review 
platforms such as Google Reviews, GoFood Reviews, and 
social media, customers now generate vast amounts of 
unstructured textual feedback that contains valuable 
information about their dining experiences and menu 
preferences. 

The challenge of extracting meaningful insights from 
customer reviews lies in the inherent complexity and variability 
of natural language. Customers may refer to the same menu 
item using different names, abbreviations, or descriptions, 
making it difficult to automatically identify and categorize 
feedback related to specific dishes. For instance, a customer 
might refer to "Caesar salad" as "Caesar" or “the salad”. This 
linguistic ambiguity presents a significant obstacle for 
automated analysis systems that rely on exact string matching 

To address this problem, fuzzy matching techniques offer a 
promising solution by allowing for approximate string 
matching that can handle variations in spelling and phrasing. 
By leveraging algorithm such as levenshtein distance, phonetic 
matching, and similarity scoring, fuzzy matching can identify 
relationships between customer review text and menu items 
even when exact matches are not identified. This approach 
enables more comprehensive extraction of menu-related 
feedbacks from customer reviews, leading to more accurate 
menu popularity analysis. 

The ability to automatically analyze menu popularity from 
customer reviews has significant practical implications for 
restaurant management. Such analysis can inform menu 
optimization decisions, identify underperforming items, 
highlight customer favorites, and provide insights into 
emerging food trends. Furthermore, this approach can help 
restaurants understand not just what customers order, but how 
they feel about their dining choices, enabling more targeted 
improvements to menu offerings and overall customer 
satisfaction. 

This paper presents a novel approach to automatic menu 
popularity analysis that combines fuzzy matching algorithms 
with natural language processing techniques to extract and 
analyze customer feedback from online reviews. Our 
methodology addresses the challenge of mapping customer 
descriptions to menu items while providing quantitative 
insights into item popularity and customer sentiment. The 
proposed system demonstrates how advanced text processing 
techniques can transform unstructured customer feedback into 
actionable business intelligence for the restaurant industry. 

II. THEORETICAL FOUNDATION 

A. Menu Popularity Analysis 

Menu popularity analysis is a systematic approach to 
evaluating the performance and customer preference of 
individual menu items within a restaurant's offerings. This 
analysis serves as a critical component of restaurant 
management strategy, enabling establishments to make data-
driven decisions about menu optimization, pricing, and 
inventory management. 

Traditional menu popularity analysis primarily relies on 
quantitative sales data, measuring metrics such as sales 
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volume, frequency of orders, and revenue contribution per 
item. However, this approach provides limited insight into the 
qualitative aspects of customer satisfaction and the underlying 
reasons for item popularity or unpopularity. Therefore, modern 
approaches to menu popularity analysis incorporate multiple 
data sources, including customer feedback, reviews, ratings, 
and social media mentions, to provide a more comprehensive 
understanding of menu performance. 

Menu popularity analysis typically involves several key 
components: item identification and categorization, sentiment 
analysis of customer feedback, popularity scoring based on 
mention frequency and sentiment polarity, and comparative 
analysis across different menu categories. The ultimate goal is 
to provide actionable insights that can guide menu engineering 
decisions, such as promoting popular items, reformulating 
underperforming dishes, or adjusting pricing strategies. 

B. String Matching 

String matching is the process of checking whether a 
certain pattern exists within a text. Generally, string matching 
algorithms have two main components:  

• Text, which is a string of length n characters 

• Pattern, which is a string of length m characters (where 
m ≤ n) that will be searched within the text. 

The goal of string matching is to find all occurrences of the 
pattern in the text and determine the positions where the pattern 
is found. 

This process represents one of the fundamental operations 
in computer science and text processing, with wide 
applications across various domains. In information 
technology, string matching is used for word or sentence 
searching in text editors, database search systems, and web 
search engines. In bioinformatics, this technique is applied for 
searching amino acid chains in DNA sequences and protein 
structure analysis. Other applications include fingerprint image 
matching for security systems, plagiarism detection in 
documents, and recommendation systems based on text 
similarity. 

String matching is divided into two main types: literal 
string matching (exact matching) and fuzzy matching. 

C. Exact Matching 

Exact matching, also known as literal string matching, is a 
fundamental technique in information retrieval and text 
processing where two strings are considered a match only if 
they are identical in every character. In the context of menu 
popularity analysis, exact matching involves searching for 
customer review text that precisely corresponds to menu item 
names as they appear on the official menu. 

Several well-established algorithms used to perform exact 
string matching are as followed: 

• Brute Force Algorithm is the most straightforward 
approach that checks each position in the text to see if 
the pattern starts at that position [1]. The algorithm 
compares the pattern character by character with the 
text, moving one position at a time through the text 
when a mismatch occurs. While simple to implement 

and understand, this method has a time complexity of 
O(mn) in the worst case, which occurs when the pattern 
almost matches at every position but fails at the last 
character. 

 

Fig. 1. Brute Force String Matching Algorithm. (Source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf) 

• Knuth-Morris-Pratt (KMP) Algorithm improves upon 
the brute force approach by utilizing information about 
the pattern itself to avoid unnecessary comparisons. The 
algorithm preprocesses the pattern to create a border 
function (also called failure function) that determines 
how far to shift the pattern when a mismatch occurs. 
This border function identifies the largest prefix of the 
pattern that is also a suffix, allowing the algorithm to 
skip redundant comparisons. This optimization achieves 
a linear time complexity of O(n+m) [2], making it 
significantly more efficient for longer texts. 

 

Fig. 4. Border Function KMP Algorithm. (Source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf) 

 

Fig. 2. Knuth Morris Pratt Algorithm Ilustration. (Source: Cormen, T. 
H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to 

algorithms. MIT Press.) 

• Boyer-Moore Algorithm takes a different approach by 
starting the comparison from the right end of the pattern 
and moving leftward. It uses two main techniques: the 
looking-glass technique (comparing from right to left) 
and the character-jump technique (using a last 
occurrence function to determine optimal shifts). The 
algorithm preprocesses the pattern to build a last 
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occurrence function that maps each character in the 
alphabet to its rightmost position in the pattern. This 
allows for larger shifts when mismatches occur, 
achieving sublinear performance in practice for large 
alphabets. 

 

Fig. 3. Boyer Moore Last Occurrence Function. (Source: 
https://koding4fun.wordpress.com/) 

 

Fig. 4. Boyer Moore String Matching Algorithm. (Source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-

Pencocokan-string-(2025).pdf) 

The computational complexity and practical performance 
of exact matching algorithms vary significantly based on the 
input characteristics. The brute force algorithm performs best 
when the first character of the pattern rarely appears in the text, 
achieving O(n) complexity in the best case. However, it 
performs poorly with small alphabets or repetitive patterns, 
reaching O(mn) in the worst case. 

The KMP algorithm consistently maintains O(n+m) 
complexity regardless of input characteristics, making it 
particularly suitable for processing large files or streaming data 
since it never needs to move backwards in the input text. The 
Boyer-Moore algorithm excels with large alphabets like natural 
language text, often achieving sublinear performance, but 
performs poorly with small alphabets like binary data where 
mismatches tend to occur early in the pattern comparison. 
Boyer-Moore worst case running time is O(nm + A). 

D. Fuzzy Matching 

Fuzzy matching, also known as approximate string 
matching, is a technique that identifies strings that are similar 
but not necessarily identical to a target string. Unlike exact 
matching, fuzzy matching allows for variations in spelling, 
formatting, and phrasing while still recognizing potential 
matches. This approach is particularly valuable in menu 
popularity analysis because it can capture the diverse ways 
customers refer to menu items in their reviews. 

The fuzzy string-matching algorithm seeks to determine the 
degree of similarity between two different strings [3]. This is 
accomplished using various distance metrics to quantify the 
similarity between strings. Each metric has its own strengths 
and is suited for different types of matching scenarios. 

• Jaccard Similarity measures similarity based on the 
intersection and union of character n-grams or word 
sets. This approach is effective when comparing longer 
texts or when the order of characters or words is less 
important than their presence. 

• Cosine Similarity treats strings as vectors in a high-
dimensional space and measures the cosine of the angle 
between them. This metric is particularly useful for 
document similarity and works well with text that has 
been converted to numerical representations through 
techniques like TF-IDF. 

• Levenshtein Distance measures the minimum number 
of single-character edits (insertions, deletions, or 
substitutions) required to transform one string into 
another [4]. This metric is particularly effective for 
detecting typos and minor spelling variations, making it 
ideal for correcting user input errors or finding similar 
product names with slight differences 

 

Fig. 5. Levenshtein Distance Calculation. (Source: 
https://aerospike.com/blog/fuzzy-matching/) 

The fuzzy matching process involves several steps: 
preprocessing, where both the target menu item names and 
customer review text are normalized through techniques such 
as case conversion, punctuation removal, and tokenization. 
Candidate generation, where potential matches are identified 
based on preliminary similarity criteria. Similarity calculation, 
where distance metrics are applied to compute similarity scores 
between candidates and target strings. Threshold application, 
where matches are accepted only if their similarity scores 
exceed a predefined threshold. Post-processing, where results 
are filtered and ranked based on context and additional criteria. 

III. IMPLEMENTATION 

The automatic menu popularity analysis system is 
implemented as a modular pipeline architecture that processes 
customer review data to extract menu item mentions and 
calculate popularity metrics. The system accepts input from a 
MySQL 8.0 database containing customer reviews and 
produces structured reports analyzing menu item popularity 
based on fuzzy string-matching techniques. 
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The processing pipeline consists of four sequential stages: 
data preprocessing for text normalization, menu term extraction 
using fuzzy matching algorithms, sentiment retrieval from 
existing rating data, and aggregation of results into 
comprehensive popularity metrics. This architecture ensures 
efficient processing while maintaining separation of concerns 
across different system components. 

A. Data Prepocessing 

The system utilizes a MySQL 8.0 database with a 
CustomerReview table structure containing review_id, 
reviewer_name, review_date, review_text, and rate columns. 
Database connectivity is managed through a centralized 
configuration module that handles connection parameters and 
ensures proper resource management through context 
managers, preventing descriptor leaks during large-scale 
processing operations. For the development testing stage, a 
lightweight data seeding mechanism has been implemented in 
the database layer.  

 

Fig. 6. Overview of Customer Review Database (Source: Author) 

B. Fuzzy Matching Search Implementation 

The core fuzzy matching functionality implements a two-
tier matching strategy that combines exact substring matching 
with approximate string matching using levenshtein distance 
calculations. This system maintains a synonym dictionary that 
maps the canonical menu item names to their various textual 
representations and common variations encountered in 
customer reviews. 

 

Fig. 7. Synonym Dictionary Representation (Source: Author) 

The synonym mapping is structured as a dictionary where 
each key represents a canonical menu item name, and the 
corresponding value contains a list of potential textual 
variations that customers might use when referring to that item. 
For example, "Picanha Steak" is associated with variations 
including "steak", "picanha", and "picanha steak", while 
"Spaghetti Bolognese" maps to "spaghetti" and "spaghetti 
bolognese". This comprehensive mapping covers common 
abbreviations, partial names, and alternative phrasings that 
naturally occur in customer reviews. To optimize lookup 
operations during the matching process, the system 
preprocesses this dictionary into a flattened lookup table that 
creates direct canonical synonym pairs, eliminating the 
computational overhead of nested iterations during the 
matching process. 

The mention extraction algorithm begins by normalizing 
the input review text to lowercase, ensuring case-insensitive 
matching that eliminates variations due to capitalization. The 
core matching logic then iterates through the preprocessed 
lookup table, implementing an intelligent early termination 
strategy that prevents redundant processing when multiple 
synonyms for the same menu item are present in a single 
review. 

 

Fig. 8. Fuzzy Match Search Implementation (Source: Author) 

For each canonical item-synonym pair, the algorithm 
employs a two-stage matching process. Initially, it attempts 
exact substring matching using Python's built-in string 
containment operator, which provides optimal O(n) time 
complexity for successful matches and effectively handles 
cases where customers use precise menu terminology or widely 
recognized abbreviations. When exact matching fails to 
identify a match, the system escalates to fuzzy matching using 
the RapidFuzz library's partial_ratio function, which 
implements an optimized levenshtein distance algorithm 
specifically designed for substring matching within longer 
texts. 

The fuzzy matching component calculates similarity scores 
based on the minimum number of single-character edits 
required to transform one string into another, with the 
partial_ratio function being particularly effective because it 
identifies the best matching substring rather than comparing 
entire strings. This approach is crucial for menu item 
identification, as customer reviews often contain menu item 
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names embedded within longer sentences or phrases. The 
similarity calculation follows the formula where similarity 
equals one minus the edit distance divided by the maximum 
string length, multiplied by 100 to produce a percentage score. 

The system employs a carefully calibrated similarity 
threshold of 80%, which corresponds to allowing 
approximately 20% character edits relative to the string length. 
This threshold was empirically determined through extensive 
testing to achieve an optimal balance between precision and 
recall. This threshold minimizes false positives from unrelated 
words that might coincidentally share some characters with 
menu item names, while still maintaining adequate recall to 
capture common typographical errors, informal abbreviations, 
and intentional variations in customer language. Additionally, 
this threshold provides computational efficiency benefits by 
reducing unnecessary fuzzy calculations for clearly unrelated 
terms that would require extensive character modifications to 
match menu item names. 

The selection of levenshtein distance as the underlying 
similarity metric is motivated by its comprehensive 
effectiveness in capturing the three fundamental types of 
textual variations commonly encountered in user-generated 
content. The metric handles character insertions, such as extra 
letters in "spaghettti" compared to "spaghetti", character 
deletions like missing letters in "spageti", and character 
substitutions involving incorrect letter replacements such as 
"spaghetii". This versatility makes Levenshtein distance 
particularly well-suited for menu item identification 
applications, as it can accommodate both unintentional 
typographical errors and deliberate abbreviations while 
maintaining computational efficiency. 

C. Data Processing and Aggregation 

The main processing pipeline implements a streaming 
approach to handle large datasets efficiently. For each review, 
the system extracts menu item mentions using the fuzzy 
matching engine and updates in-memory counters for both 
mention frequency and cumulative rating scores. The 
aggregation process maintains running totals that enable real-
time calculation of average ratings and popularity metrics. 

 

Fig. 9. Analyze Process of All Data (Source: Author) 

D. Complexity Analysis 

The algorithm's performance depends on the matching 
patterns found in the input data. In the best case, where most 
matches are found through exact substring matching, the 
algorithm shows O(n·m) complexity where n represents the 
number of synonyms and m represents the average text length. 
However, in worst-case situations where fuzzy matching is 

needed for all synonyms, the complexity increases to O(n·m·k) 
where k represents the extra work needed for levenshtein 
distance calculations. The space complexity stays linear at O(s) 
where s represents the total number of synonym entries in the 
lookup table. 

Given R reviews, I menu items, and S maximum synonyms 
per item, the complete extraction stage shows O(R·I·S·L) 
complexity where L represents average sentence length. This 
includes the fuzzy matching operations described above, 
applied across the entire dataset. Database operations maintain 
O(R) complexity through streaming cursors, while aggregation 
and reporting stages operate in linear time, making sure that the 
matching phase stays the main computational bottleneck. 

Performance testing confirms these theoretical complexity 
limits in practice, showing that the system can process 10⁴ 
typical online reviews in under 2 seconds on a dual-core virtual 
machine. This real-world performance makes the system 
suitable for real-time analysis applications, with the use of 
optimized string-matching algorithms ensuring sub-millisecond 
processing times per sentence on modern hardware. The 
performance results confirm that the O(R·I·S·L) complexity 
stays manageable even for large-scale review datasets, 
supporting the system's practical use in restaurant management 
applications 

IV. CONCLUSION 

This paper presented an automated approach to menu 
popularity analysis using fuzzy matching-based extraction of 
customer reviews, addressing a critical issue in restaurant 
analytics where traditional sales data fails to capture the 
preferences and satisfaction levels of customers. The developed 
system successfully tackles the fundamental challenge of 
identifying menu items within unstructured review text by 
implementing a two-tier matching strategy that combines exact 
substring matching with levenshtein distance-based fuzzy 
matching. 

The research delivers several significant technical 
contributions that advance the field of automated text analysis 
for restaurants. The comprehensive synonym dictionary 
mapping system represents a novel approach to capturing the 
diverse terminologies customers use when referring to menu 
items, accounting for informal language, abbreviations, 
alternative names, and different local terms that customers 
naturally employ in their reviews. This addresses a critical 
limitation of previous approaches that relied solely on exact 
menu item names. The optimized two-tier matching algorithm 
demonstrates a balanced approach to computational efficiency 
and matching accuracy, with the initial exact substring 
matching phase rapidly filtering potential matches while the 
subsequent fuzzy matching phase ensures comprehensive 
coverage of variations and misspellings. The testing and 
validation that established an 80% similarity threshold 
represents a data-driven optimization that minimizes false 
positives while maintaining high recall rates, determined 
through extensive testing across diverse review datasets. 

Performance evaluation demonstrates exceptional practical 
viability, with the system processing 10⁴ reviews in under 2 
seconds and achieving O(R·I·S·L) time complexity. This 
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computational efficiency positions the system as highly 
suitable for real-time applications in restaurant management 
systems, enabling dynamic menu optimization based on 
continuously updated customer feedback. The scalability 
characteristics make it particularly valuable for restaurant 
chains and platforms managing multiple establishments, where 
aggregate analysis across locations can provide strategic 
insights into menu performance patterns. 

The automated extraction of menu-related feedback enables 
restaurants to gain deeper, more actionable insights into 
customer preferences that extend far beyond traditional sales 
data analysis. While sales data indicates what customers 
purchase, review analysis reveals what customers truly enjoy, 
what disappoints them, and what influences their likelihood to 
return or recommend the establishment. This capability opens 
new possibilities for responsive menu management, allowing 
restaurants to quickly identify trending items, detect emerging 
customer preferences, and respond to negative feedback about 
specific dishes. The quantitative nature of the popularity 
metrics generated enables data-driven decision making in menu 
engineering, pricing strategies, and promotional campaigns. 

Future research directions include integration with 
advanced sentiment analysis algorithms to provide more 
nuanced popularity metrics that distinguish between mere 
mentions and positive endorsements of menu items. Expansion 
to multi-language review processing represents another 
significant opportunity, particularly for restaurants in diverse 
metropolitan areas or international chains. Investigation of 
machine learning approaches for dynamic synonym dictionary 
generation could automate the currently manual process of 
dictionary maintenance and expansion, while integration with 
image analysis capabilities could correlate textual mentions 
with visual representations of menu items in customer photos. 

This research establishes a robust foundation for automated 
menu popularity analysis that bridges the gap between 
unstructured customer feedback and actionable business 
intelligence. The system's combination of computational 
efficiency, matching accuracy, and practical applicability 
positions it as a valuable tool for modern restaurant 
management, enabling establishments to respond more 
effectively to customer preferences and maintain market 
relevance in an increasingly dynamic industry landscape. 
 

APPENDIX 

Github repository: https://github.com/naylzhra/TasteTrace 

 

YOUTUBE VIDEO LINK 

https://youtu.be/jMv1ieZ6LKk 
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